WEYL CURVATURE , EINSTEIN METRICS , AND SEIBERG - WITTEN THEORY Claude LeBrun
نویسندگان
چکیده
We show that solutions of the Seiberg-Witten equations lead to nontrivial estimates for the L2-norm of the Weyl curvature of a compact Riemannian 4-manifold. These estimates are then used to derive new obstructions to the existence of Einstein metrics on smooth compact 4-manifolds with a non-zero Seiberg-Witten invariant. These results considerably refine those previously obtained [21] by using scalar-curvature estimates alone.
منابع مشابه
Weyl Curvature, Einstein Metrics, and Seiberg-Witten Theory
We show that solutions of the Seiberg-Witten equations lead to nontrivial estimates for the L-norm of the Weyl curvature of a smooth compact 4-manifold. These estimates are then used to derive new obstructions to the existence of Einstein metrics on smooth compact 4-manifolds with a non-zero Seiberg-Witten invariant. These results considerably refine those previously obtained [21] by using scal...
متن کامل0 Ricci Curvature , Minimal Volumes , and Seiberg - Witten Theory Claude LeBrun
We derive new, sharp lower bounds for certain curvature functionals on the space of Riemannian metrics of a smooth compact 4manifold with a non-trivial Seiberg-Witten invariant. These allow one, for example, to exactly compute the infimum of the L2-norm of Ricci curvature for all complex surfaces of general type. We are also able to show that the standard metric on any complex hyperbolic 4manif...
متن کاملPolarized 4-Manifolds, Extremal Kähler Metrics, and Seiberg-Witten Theory
Using Seiberg-Witten theory, it is shown that any Kähler metric of constant negative scalar curvature on a compact 4-manifold M minimizes the L-norm of scalar curvature among Riemannian metrics compatible with a fixed decomposition H(M) = H ⊕ H−. This implies, for example, that any such metric on a minimal ruled surface must be locally symmetric.
متن کاملFour-manifolds without Einstein Metrics
It is shown that there are infinitely many compact simply connected smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.
متن کاملFour-Manifolds, Curvature Bounds, and Convex Geometry
Seiberg-Witten theory leads to a remarkable family of curvature estimates governing the Riemannian geometry of compact 4-manifolds, and these, for example, imply interesting results concerning the existence and/or uniqueness of Einstein metrics on such spaces. The primary purpose of the present article is to introduce a simplified, user-friendly repackaging of the information conveyed by the Se...
متن کامل